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Because of the complexity of the mathematical expressions, the literature
concerning the free vibration analysis of a uniform beam carrying a &&single'' two
degrees-of-freedom (d.o.f.) spring}mass system is rare and the publications relating
to that carrying &&multiple'' two-d.o.f. spring}mass systems have not yet appeared.
Hence the purpose of this paper is to present some information in this area. First of
all, the closed form solution for the natural frequencies and the corresponding
normal mode shapes of the uniform beam alone (or the &&bare'' beam) with the
prescribed boundary conditions are determined analytically. Next, a method is
presented to replace each two-d.o.f. spring}mass system by two massless equivalent
springs with spring constants k(v)

eq, i
and k(v)

eq,k
, and then the foregoing natural

frequencies and normal mode shapes for the&&bare'' beam are in turn used to derive
the equation of motion of the &&loading'' beam (i.e., the bare beam carrying any
number of two-d.o.f. spring}mass systems) by using the expansion theorem.
Finally, the natural frequencies and the associated mode shapes of the&&loading''
beam are obtained from the last equation by using the numerical method. To
con"rm the reliability of the present method, all the numerical results obtained in
this paper are compared with the corresponding ones obtained from the
conventional "nite element method (FEM) and good agreement is achieved.
Because the order of the property matrices for the equation of motion of
the&&loading'' beam derived from the present method is much lower than that
derived from the FEM, the computer time required by the former is much less than
that required by the latter. Besides, the equation of motion derived from the present
method may always run on the cheaper personal computers, but that from the
FEM may run only on the more expensive larger computers if the degree of
freedom of the loading beam exceeds a certain limit.

( 1999 Academic Press
1. INTRODUCTION

The e!ects of vibration absorbers on the vehicle suspensions or the rotating
machineries and the dynamic behavior of components of machine tool structures
due to excitations are the important information that the machine designers hope
to obtain. Since beams carrying one or two-degrees-of-freedom (d.o.f.) spring}mass
systems are good examples to provide this information, many researchers have
0022-460X/99/420361#21 $30.00/0 ( 1999 Academic Press
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devoted themselves to the studies of this area. For example, Snowdon [1], Jacquot
[2], Dowell [3], Nicholson and Bergman [4]. OG zguven and Candir [5], and
Manikanahally and Crocker [6] have studied the e!ects of single- and
multiple-d.o.f. spring}mass absorbers. Laura et al. [7], Ercoli and Laura [8],
Larrondo et al. [9], and GuH rH goH ze [10] have investigated the behavior of beams
carrying a single-d.o.f. spring}mass system. Besides, FryH ba [11], Hino et al.
[12, 13], Yoshimura et al. [14, 15] and Lin et al. [16, 17] have investigated the
vibration problem of single and multiple spring}mass systems moving along
a beam by considering the interactions between the suspension systems and the
beam. In 1993, Jen and Magrab [18] presented an&&exact'' solution for the natural
frequencies and mode shapes for beams carrying a&&single'' two-d.o.f. spring}mass
system.

In references [16, 17] the governing equations for the&&entire'' system (i.e., the
beam together with the two-d.o.f. spring}mass system) were derived based on the
"nite element formulation and in references [18, 19] the same work was done by
using the Laplace transform with respect to the spatial variable. Instead of the
&&entire'' system, the two-d.o.f. spring}mass system alone is considered as a "nite
element and then the element property matrices were derived based on the force
(and moment) equilibrium between the spring}mass system and the beam in this
paper. Besides, it was found in this paper that any two-d.o.f. spring}mass system
may be replaced by four massless &&e!ective'' springs with spring constants k(v)

eff, ij
(i, j"1,2) or two massless &&equivalent'' springs with spring constants k(v)

eq, i
and k(v)

eq,k
,

so that a beam carrying any number of two-d.o.f. spring}mass systems may be
considered as a beam supported by a number of e!ective (or equivalent) springs and
the other alternative approaches may be used to solve the same problem in addition
to the conventional "nite element method (FEM).

In reference [20] alternative formulations of the frequency equation of
a Bernoulli}Euler beam carrying several spring}mass systems were presented. But
all the spring}mass systems considered were single-degree-of-freedom (d.o.f)
systems rather than two-d.o.f. ones studied in this paper. From reference [21] one
sees that the order of the property matrices for the equation of motion of a
uniform beam carrying multiple concentrated elements derived from the
analytical-and-numerical-combined method (ANCM) is much less than that
derived from the FEM; therefore, the computing time required by the ANCM
is much less than that required by the FEM. For this reason, in this paper
ANCM is used to determine the natural frequencies and mode shapes of a
uniform cantilever beam carrying multiple two-d.o.f. spring}mass systems. It is
noted that all the spring}mass systems studied in reference [21] are those with
&&single'' d.o.f.; hence, this paper is the "rst to do the free vibration analysis of
a uniform beam carrying multiple &&two'' d.o.f. spring}mass systems by using the
ANCM.

To agree with the existing literature [21], a uniform beam with prescribed
boundary conditions is called the &&constrained'' beam if it carries any spring}mass
systems, and is called the &&unconstrained'' beam if it carries nothing. For
convenience, they were also called the &&loading'' beam and &&bare'' beam in this
paper respectively.
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2. EQUATION OF MOTION FOR EACH TWO-DOF SPRING}MASS SYSTEM

For an arbitrary two-d.o.f. spring}mass system mounted on a uniform beam at
x"x(v)

i
and x"x(v)

k
as shown in Figure 1(a), the coupled equations for the

spring}mass system are de"ned by
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where F
v
and M

v
are the external force and moment on the mass of the spring}mass

system, while F
i
and F

k
are the interactive forces between the two-d.o.f. spring}mass

system and the uniform beam at the two attaching points Li and Lk . The latter are
given by
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The substitution of equations (3) and (4) into equations (1) and (2) gives
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Figure 1 (a). A uniform beam carrying an arbitrary two-d.o.f. spring}mass system and (b) the
two-d.o.f. spring}system is replaced by two equivalent springs k(v)

eq, i
and k(v)

eq, k
.
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Writing equations (3) } (6) in matrix form, one obtains
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where
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In the last expressions, [m] is the mass matrix, [k] is the sti!ness matrix and MFN is
the external loading vector, while MuN and MuK N are the displacement vector and
acceleration vector respectively.

3. EQUIVALENT SPRING CONSTANTS

For the free vibration of spring}mass system, the external loads on it are zero: i.e.,
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In such a case, from equations (5) and (6) one obtains
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For free vibration of the constrained beam (i.e., the uniform beam together with the
spring}mass system), one has
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where u6 is the natural frequency of the constrained beam, while uN
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, h1

v
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k
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i
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respectively. Substituting equations (15) and (16) into equations (13) and (14), one
obtains
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Introducing equations (15) and (16) into equations (3) and (4) and then writing the
results in matrix form, one obtains

G
FM

i
FM

k
H"k(v)

y C
1 0
0 1D G

uM
i

uN
k
H#k(v)

y C
!1 a(v)

1
!1 !a(v)

2
D G

uN
v

h1
v
H . (19)

The substitution of equation (18) into equation (19) leads to
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From equation (20) one sees that the relationship between MFM
i
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k
N and MuN
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takes the form
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where
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Equation (23) means that the two-d.o.f. spring}mass system shown in Figure 1(a)
may be replaced by four e!ective springs with spring constants k(v)

eff, ij
(i, j"1,2) (c.f.

Figure 1(b)]
In order to apply the analytical-and-numerical-combined method (ANCM) to

solve the title problem, the last four &&e!ective'' springs must be further replaced by
two &&equivalent'' springs with spring constants k(v)

eq, i
and k(v)

eq, k
. The latter are found

to be
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The last expressions were derived from equation (23). The symbols >M
s
(x(v)

i
) and
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s
(x(v)

k
) in equation (27) represent the values of the modal displacements of the sth

mode shape at the attaching points of the vth two-d.o.f. spring}mass system with
the beam, x(v)

i
and x(v)

k
respectively. In reference [22], it has been found that the

exact solution presented in reference [18] is correct only if the e!ects of the
coupling e!ective spring constants k(v)

eff,12
and k(v)

eff,21
de"ned by equation (24) are

negligible.

4. EQUATION OF MOTION FOR THE CONSTRAINED BEAM

Once all the two-d.o.f. spring}mass systems are replaced by the equivalent
springs with spring constants k(v)

eq,j
( j"1, 2 and v"1&p), then from equation (12)

of reference [21] one may infer that the equation of motion for uniform beam
carrying p two-d.o.f. spring}mass systems is given by
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In the above equations, E is the Young's modulus of the beam material, I is the
moment of inertia of the cross-sectional area of the beam, mN is the mass per unit
length of the beam, >M

r
(x) and >M

s
(x) are the normal mode shapes of the uncon-

strained beam, q
r
(t) is the generalized co-ordinate, x(v)

i
and x(v)

k
are the co-ordinates

of the attaching points Li and Lk [see Figure 1(a)] for the v-th spring}mass system,
d ( ) ) is the Dirac delta function, and n@ is the total number of normal mode shapes of
the unconstrained beam considered.

By using the orthogonality of the normal mode shapes>M
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where u
s
is the sth natural frequency of the unconstrained beam.

For free vibration of the constrained beam, the generalized co-ordinate q
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takes the form
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The substitution of equation (31) into equation (30) leads to the following
equations of motion for the constrained beam:

u2
s
qN
s
#

p
+
v/1

n@

+
r/1

k(v)
eq, i
>M

r
(x(v)

i
) >M

s
(x(v)

i
) qN

r

#

p
+
v/1

n{
+
r/1

k(v)
eq, k
>M

r
(x(v)

k
) >M

s
(x(v)

k
) qN

r
"u6 2 qN

s
, s"1&n@. (32)

5. CHARACTERISTIC EQUATIONS FOR THE CONSTRAINED BEAM

Equation (32) represents a set of n@ simultaneous equations. For the convenience
of solving the problem, they are rewritten in the matrix form
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In the last few expressions, the symbols [ ] , M N and vy represents the square
matrix, column vector and diagonal matrix, respectively. Non-trival solution of
equation (33) requires that

D [A]!u6 2 [B] D"0. (35)

Since the equivalent spring constant k(v)
eq, i

and k(v)
eq, k

for each two-d.o.f. spring}mass
system are functions of the natural frequency u6 of the constrained beam as shown
by equations (21)}(27), and so are the square matrices [A@] and [A] de"ned by
equation (34), the half-interval method [23] was used to solve the eigenvalues u6

s
(s"1&n@) and the corresponding eigenvectors MqN N(s) are obtained by substituting
the values of u6

s
into equation (33). Finally, the mode shapes of the constrained

beam are determined by
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6. SOLUTION OF THE PROBLEM WITH THE FEM

From the foregoing formulation one also sees that the problem studied in this
paper may be solved by two kinds of FEM [22]: the approach considering each
two-d.o.f. spring}mass system as a "nite element with element property matrices
de"ned by equations (8) and (9) is called Method 1 (or FEM1), and the one
replacing each spring}mass system by four e!ective springs with spring constants
k(v)
eff, ij

(i, j"1, 2) de"ned by equations (23) and (24) is called Method 2 (or FEM2).
The key points of the two methods are stated below. For the details one may refer
to reference [22].

6.1. PROPERTY MATRICES FOR FEM1

If the sti!ness matrix of the vth two-d.o.f. spring}mass system as shown in
Figure 2 is denoted by (see equation (9))
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and the node numbers on the uniform beam at which the two-d.o.f. spring}mass
system attached are Li and Lk , then the contribution of the element sti!ness matrix
[k] on the overall sti!ness matric [K] is shown in equation (38); where the values of
k
2i~1, 2i~1

, k
2i~1, 2k~1

, k
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are the sti!ness coe$cients



Figure 2. The vth two-d.o.f. spring}mass system attaches the beam at nodes Li and Lk .
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obtained from assembly of all the uniform beam elements; similarly, the
contribution of the element mass matrix [m] to the overall mass matrix [M] may
be achieved in a similar way, it is evident that the two attaching points Li and Lk
are arbitrary and not necessarily adjacent ones.
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It is noted that, in Figure 2, the digits (1, 2,2) in the parentheses ( ) represent the
numbers for the "nite elements and those in the small circles L present those for
the nodes.

6.2. PROPERTY MATRICES FOR FEM2

If the uniform beam shown in Figure 2 is a cantilever beam with left end clamped,
then the overall sti!ness matrix of the beam after imposing the boundary
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conditions takes the form of equation (39) (excluding the quantities in the
parentheses).

It is noted that the identi"cation numbers for the degrees of freedom of the two
attached pointsLi andLk as shown in Figure 2 are changed from 2i-1, 2i, 2k-1 and
2k (see equation (38)] to 2i-3, 2i-2, 2k-3 and 2k-2 (see Equation (39)), respectively.

For convenience, if the e!ective spring-constant matrix of the vth two-d.o.f.
spring}mass system as shown in Figure 1 is represented by equation (40), then the
contribution of the element sti!ness matrix [k

eff
] to the overall sti!ness matrix [KM )

is shown in equation (39); since each two-d.o.f. spring}mass system is replaced by
the four massless e!ective springs with spring constant k(v)

eff, ij
(i, j"1, 2), the overall

mass matrix [MM ] is not a!ected by the spring masses:

uN
1

uN
2
2 uN

2i~3
uN
2i~2

2 uN
2k~3

uN
2k~2

2 uN
2n

[K1 ]"C
kM
2i~3, 2i~3

(#k(v)
eff, 11

)
kM
2i~3, 2k~3

(#k(v)
eff, 12

)

kM
2k~3, 2i~3

(#k(v)
eff, 21

)
kM
2k~3, 2k~3

(#k(v)
eff, 22

) D
uN
1

uN
2

2

uN
2i~3

uN
2i~2

F

uN
2k~3

uN
2k~2

F

uN
2n

, (39)

[k
eff
]"C

k(v)
eff, 11

k(v)
eff, 12

k(v)
eff, 21

k(v)
eff, 22

D . (40)

7. NUMERICAL RESULTS AND DISCUSSIONS

The dimensions and the material constants for the uniform beam studied in this
paper (except the one shown in Figure 3(b) of section 7.1) are total length ¸"1)0 m,
diameter d"0)05 m, Young's modulus E"2)069]1011 N/m2, mass density
o"7)8367]103 kg/m3, mass per unit length m"oA"15)3875 kg/m,
cross-sectional area A"nd2/4"1)9635]10~3 m2, moment of inertia
I"nd4/64"3)06796]10~7 m4, total mass of the beam m

b
"m¸"15)3875 kg.

7.1. RELIABILITY OF THE RESULTS

In order to con"rm the reliability of the theory presented in this paper and the
computed programs developed based on the related algorithm, a clamped}clamped
uniform beam carrying a two-d.o.f spring}mass system located at x(1)

i
"0)2 m and



Figure 3 (a). A clamped}clamped uniform beam carrying a two-d.o.f. spring}mass system
(m(1)

e
"1)53875 kg, J(1)

e
"1)53875 kg m2, k(1)

y
"6)34761]106 N/m, x(1)

i
"0)2 m, x(1)

k
"0)4 m, ¸"1)0

m, a(1)
1
"0)06667 m, a(1)

2
"0)13333 m). (b) A general restrained uniform beam carrying a two-d.o.f.

spring}mass system [19] (m(1)
e
"500)0 kg, J(1)

e
"177)0833 kg m2, k(1)

y
"1)0]1010 N/m, x(1)

i
"1)4 m,

x(1)
k
"2)6 m, ¸"4.0 m, a(1)

1
"0)6 m, a(1)

2
"0)6 m, K

1
"K

2
"1)0]1010 N/m, b

1
"b

2
"1)0]1010

N m/rad, E"2)0]1011 N/m2, A"0)15 m2, I"0)003125 m4, o"7860 kg/m3).
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x(1)
k
"0)4 m with a(1)

1
"0)06667 m and a(1)

2
"0)13333 m presented in Figure 6 of

reference [18] and a general restrained uniform beam carrying a two-d.o.f.
spring}mass system presented in Figure 1 of reference [19] are studied here (see
Figures 3(a) and (b)). For the uniform beam shown in Figure 3(a), besides the
dimensions and the material constants mentioned above, the other given data are:
m(1)

e
"0)1 m

b
"1)53875 kg, k(1)

y
"100(EI/¸3)"6)34761]106 N/m (for each

spring) and J(1)
e
"0)1 (m

b
¸2)"1)53875 kg m2. The "rst "ve natural frequencies of

the constrained beam are shown in Table 1(a), where are values of u6
s

(s"1, 2, . . . , 5) listed in the third row were obtained from FEM1 (i.e., the two-d.o.f.



TABLE 1

(a) ¹he ,rst ,ve natural frequencies uN
s
(s"1}5) of a uniform clamped}clamped beam

carrying a two-d.o.f. spring}mass system obtained from FEM1, FEM2, ANCM and
reference [18]

Methods Natural frequencies u6
s
(rad/s) CPU

u6
1

u6
2

u6
3

u6
4

u6
5

time (s)

FEM 1 269)9453 1385)0940 2849)3420 4215)9160 7837)3880 6
FEM2 (a)* 273)8565 1388)5937 2879)7694 4221)9181 7837)4548 25

(b)* 253)1247 1542)8917 2823)2835 4162)7274 7841)0863 25
ANCM (a)* 273)8904 1388)6244 2880)5511 4222)2172 7837)1068 3

(b)* 253)1590 1542)9125 2823)5460 4162)9047 7840)7393 3
Reference [18] 254)5 * * * * *

Corresponding
natural * 1436.9860 * 3961)1374 7765)4533 *

freq. of the bare beam

* (a) is for the cases of &&considering'' the e!ects of the coupling spring constants k(v)
eff,12

and
k(v)
eff,21

.
* (b) is for the cases of &&neglecting'' the e!ects of the coupling spring constants k(v)

eff,12
and k(v)

eff,21
.

(b) ¹he ,rst ,ve natural frequencies uN
s
(s"1}5) of a general restrained uniform beam

carrying a two-d.o.f. spring}mass system obtain from FEM1, FEM2, ANCM and
reference [19]

Methods Natural frequencies u6
s
(rad/s) CPU

u6
1

u6
2

u6
3

u6
4

u6
5

time (s)

FEM 1 821)9344 1996)4932 3485)5766 4674)3961 6352)8630 6
FEM2 (a)* 821)9344 1996)4932 3485)5766 4674)3961 6352)5000 25

(b)* 822)4398 1995)3666 3485)6766 4669)2318 6350)0924 25
ANCM (a)* 821)9406 1996)6119 3485)5879 4677)3631 6352)5000 3

(b)* 822)4459 1995)4873 3485)6877 4672)2429 6350)1312 3
Reference [19] 822 1995 3585 4669 6348 *

Associated
natural 891)1676 2130)5243 3496)3451 5185)5954 7766)5611 *

freq. of the bare beam

* (a) is for the cases of &&considering'' the e!ects of the coupling spring constants k(v)
eff, 12

and
k(v)
eff, 21

.
* (b) is for the cases of &&neglecting'' the e!ects of the coupling spring constants k(v)

eff, 12
and k(v)

eff, 21
.
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spring}mass system is considered as a "nite element with property matrices de"ned
by equations (8) and (9)) and those listed in the rows 4}7 were obtained from FEM2
and ANCM, respectively. Row 8 lists the "rst natural frequency obtained from
reference [18], u6

1
"254)5 rad/s. It is evident that the last value is very close to the

"rst natural frequencies obtained from FEM2(b) and ANCM(b), u6
1
"253)1 rad/s.
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As shown at the bottom of Tables 1(a), (b), 2 and 4, the natural frequencies u6
s

(s"1, 2, . . . ) listed in the rows of FEM2(a) and ANCM(a) were obtained by
&&considering'' the e!ects of the coupling e!ective spring constants, k(v)

eff, 12
and

k(v)
eff, 21

and those listed in the rows of FEM2(b) and ANCM(b) were obtained by
&&neglecting'' the last e!ects. Hence the foregoing agreement between the values of
u6

1
con"rms the reliability of the "nding of reference [22] that the formulation of

reference [18] was obtained under the assumption that the e!ects of k(v)
eff, 12

and
k(v)
eff, 21

were neglected.
From Table 1(a) on "nds that the values of u6

s
(s"1, 2,2) obtained from

FEM2(a) and ANCM(a) are very close to the corresponding ones obtained from the
conventional "nite element method, FEM1. The "rst "ve mode shapes obtained
from FEM1, FEM2(a) and ANCM(a), >I

s
(m

i
) (s"1,2,2), are shown in Figures

4(a) (i)}(v), where the mode shapes obtained form the FEM1 are denoted by the
solid lines (**), while those obtained from the FEM2(a) and ANCM(a) are
denoted by the dash lines (} } }) and dash lines with stars (- - w--) respectively. From
the last "gures one sees the mode shapes obtained from the three methods (FEM1,
FEM2(a) and ANCM(a)) almost coincide with each other. The "rst mode shapes
obtained from the FEM2(a) and the FEM2(b) were plotted in Figure 4(a) (vi) to
show the e!ects of k(v)

eff, 12
and k(v)

eff, 21
. Among the two curves of Figure 4(a) (vi), the

one with hollow circles (L) was obtained from FEM2(b), which is very close to the
corresponding one shown in Figure 6 of reference [18]. It is noted that all the mode
shapes shown in Figure 4(a) were &&normalized'' with respect to the respective
maximum modal displacements so that the amplitude of each mode shape is equal
to 1)0. Besides, the mode shapes obtained from FEM2 and ANCM are the ones of
the beam itself, since each two-d.o.f. spring}mass system was replaced by the four
e!ective springs with spring constants k(v)

eff, ij
(i, j"1, 2) or by the two equivalent

springs with spring constants k(v)
eq, i

and k(v)
eq, k

. However, the mode shapes obtained
from the FEM1 are the ones of the beam together with the two-d.o.f spring-mass
systems, since each spring}mass system occupies two d.o.f. in the FEM1. For this
reason, in addition to the modal displacements of the beam itself, the translational
movement and the rotational angle of each two-d.o.f. spring}mass system will
appear in the modal displacements obtained from the FEM1. Therefore, the curves
in Figure 4(a) were plotted by excluding all the modal displacements of the
two-d.o.f. spring}mass systems and &&double'' normalizations for the mode shapes
obtained from the FEM1 were required sometimes. For example, in the third mode
of the vibrating system shown in Figure 3(a), the largest modal displacement is the
translational movement of the lump of the spring}mass system. Hence the third
&&normal'' mode shape obtained from the computer output based on the FEM1 is
the thin solid line with amplitude >I

3
(0)6):0)34766 as shown in Figure 4(a) (iii).

A good agreement with the other two curves was obtained when a second
normalization was made, i.e., all the modal displacements of the thin solid line were
divided again by 0)34766. The "nal result is shown by the wider solid line of Figure
4(a) (iii).

Another example to be used to check the reliability of the theory and the
computer programs is the uniform beam supported by two linear springs and two
rotational springs at both ends as shown in Figure 3(b). All the given data and the



Figure 4 (a). The "rst "ve mode shapes for the vibrating system shown in Figure 3 obtained from
the FEM1, FEM2 and ANCM: ***, by using FEM1;} } } , by using FEM2 (a): *w*, by using
ANCM(a); }L}, by using FEM2(b).) (b). The "rst "ve mode shapes for the vibrating system shown in
Figure 3(b) obtained from the FEM2(b) or ANCM(b):*, the 1st mode; - - - , the 2nd mode; - -m - -, the
3rd mode; - - j - -, the 4th mode; - - w - - , the 5th mode.
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boundary conditions of the bema are exactly the same as those in referenece [19].
For reference, all the given data are shown in the legend of Figure 3(b). The "rst "ve
natural frequencies and the asociated mode shapes are shown in Table 1(b) and
Figure 4(b). From Table 1(b) and Figure 4(b), one sees that all the "rst "ve natural
frequencies and the corresponding moe shapes obtained from the FEM2(b) and
ANCM(b) are in close agreement with those show on in reference [19].

From all the reasonable facts indicated in this section, it is believed that the
results presented in this paper should be reliable.

7.2. NATURAL FREQUENCIES AND MODE SHAPES OF A CANTILEVER BEAM CARRYING
A TWO-D.O.F. SPRING}MASS SYSTEM

Figure 5 shows a uniform cantilever beam carrying a two-d.o.f. spring}mass
system at the free end. All the dimensions and material constants of the beam and
the spring}mass system are exactly equal to those of the last exmple except that the
boundary conditions of the beam were changed from clamped}clamped to
clamped}free ones and the suspension positions of the two-d.o.f. spring}mass
system were also moved from x(1)

i
"0)2¸ and x(1)

k
"0)4¸ to x(1)

i
"0)8¸ and

x(1)
k
"1)0¸, where ¸ is the total length of the beam. The "rst "ve natural frequencies

obtained from the three methods are shown in Table 2. It is evident that the values
of u6

s
(s"1}5) obtained from the FEM2(a) and ANCM(a) are very close to the

corresponding ones obtained from FEM1. Besides, the values of u6
s

(s"1}5)
obtained from the FEM2(b) are also in good agreement with those obtained from
ANCM(b). The "rst "ve mode shapes obtained from FEM1, FEM2(a) and
ANCM(a) are almost overlapped and are shown in Figure 6(b). For convenience of
comparison, the "rst "ve mode shapes of the unconstrained (bare) uniform
cantilever beam are placed in Figure 6(a). For an unconstained (bare) beam,
excluding the boundary (supporting) end, the intersections (or nodes) between the
Figure 5. A uniform cantilever beam carrying a two-d.o.f. spring}mass system at the free end.



TABLE 2

¹he ,rst ,ve natural frequencies uN
s
(s"1}5) of a uniform cantilever beam carrying

a two d.o.f. spring}mass system at the free end as shown in Figure 5

Methods Natural frequencies u6
s
(rad/s) CPU

u6
1

u6
2

u6
3

u6
4

u6
5

time (s)

FEM 1 141)5405 321)3685 1524)3220 3297)6410 4276)0260 6
FEM2 (a)* 143)4206 324)2268 1526)8963 3326)6748 4279)7603 25

(b)* 54)5024 949)9614 1606)2917 3168)3310 4316)6266 25
ANCM (a)* 143)4354 324)3061 1526)9812 3330)0140 4281)0266 3

(b)* 54)5042 950)2636 1606)3952 3170)7105 4317)6319 3
Corresponding

natural * * 1415)1955 * 3962)6509 *

freq. of the bare beam

* (a) is for the cases of &&considering'' the e!ects of the coupling spring constants k(v)
eff,12

and
k(v)
eff,21

.
* (b) is for the cases of &&neglecting'' the e!ects of the coupling spring constants k(v)

eff,12
and k(v)

eff,21
.

Figure 6. The "st "ve mode shapes of a uniform cantilever beam in the conditions that: (a) no thing
attached; (b) carrying a single two-d.o.f. spring}mass system (se Figure 5); (c) carrying three two-d.o.f.
spring}mass systems (see Figure 7) :*, the 1st mode; - - - , the 2nd mode; -m-, the 3rd mode; - - j - -,
the 4th mode: - -w - -, the 5th mode.
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ith mode shape and the x-axis are equal to i!1. In other words, the nodes for the
1st, 2nd, 3rd, 4th and 5th modes of an &&unconstrained'' cantilever beam are,
respectively, equal to 0, 1, 2, 3 and 4, as one may see from Figure 6(a). But this is not
true for the mode shapes of the &&constrained'' beam shown in Figure 6(b). The "nal
row of Table 2 lists the 1st and 2nd natural frequencies of the unconstrained beam
(u

1
"1415)1955 rad/s, u

2
"3962)6509 rad/s). It is reasonable that the existence of

a single two-d.o.f. spring}mass system located at the free end largely reduces the 1st
and 2nd natural frequencies of the cantilever beam (u6

1
"141)5405 rad/s,

u6
2
"321)3685 rad/s).

7.3. NATURAL FREQUENCIES AND MODE SHAPES OF A CANTILEVER BEAM CARRYING
THREE TWO-D.O.F. SPRING}MASS SYSTEMS

To show the availability of the present technique for solving the title problem,
a uniform cantilever beam carrying three arbitrary two-d.o.f. spring}mass systems
as shown in Figure 7 was studied. The dimensions and material constants of the
cantilever beam are the same as the foregoing examples, while the locations and the
physical properties of the three spring}mass systems are shown in Table 3. The "rst
"ve natural frequencies u6

s
(s"1}5) obtained from the FEM1, FEM2(a), FEM2(b),

ANCM(a) and ANCM(b) are displayed in Table 4. As mentioned previously that
FEM2(a) and ANCM(a) consider the e!ects of k(v)

eff, ij
(iOj), but the last e!ects were

neglected by the FEM2(b) and ANCM(b). The "rst "ve mode shapes obtained from
the FEM2(a) and ANCM(a) are in good agreement with the corresponding ones
obtained from the conventional "nite element method (FEM1) and are placed in
Figure 6c.
Figure 7. A uniform cantilever beam carrying three two-d.o.f. spring}mass systems.



TABLE 3

¹he locations and physical properties of the three two-d.o.f. spring}mass systems
carried by the uniform cantilever beam shown in Figure 7

Numbering Locations Physical properties of the spring}mass systems
of systems m(v)

j
"x(v)

j
/¸

(v) m(v)
i

m(v)
k

a(v)
1

(m) a(v)
2

(m) k(v)
y

(N/m) m(v)
e

(kg) J(v)
e

(kg-m2)

1 0)1 0)3 0)07 0)13 60)0 1)6 1)6
2 0)4 0)6 0)06 0)14 600)0 1)6 3)2
3 0)8 1)0 0)12 0)08 6000)0 1)6 4)8

TABLE 4

¹he ,rst ,ve natural frequencies uN
s
(s"1&5) of a uniform cantilever beam carrying

three two-d.o.f. spring}mass systems as shown in Figure 7

Methods Natural frequencies u6
s
(rad/s) CPU

u6
1

u6
2

u6
3

u6
4

u6
5

time (s)

FEM 1 230)5258 1415)7550 3962)9230 7765)8540 12838)750 8
FEM2 (a)* 231)9355 1415)8251 3962)9617 7765)8580 12838)743 28

(b)* 231)5426 1415)8249 3962)9617 7765)8580 12838)743 28
ANCM (a)* 231)9466 1415)7972 3962)8895 7765)4563 12836)626 4

(b)* 231)5538 1415)7970 3962)8895 7765)4563 12836)626 4
Corresponding

natural 225)8360 1415)1955 3962)6509 7565)3119 12836)537 *

freq. of the bare beam

* (a) is for the cases of &&considering'' the e!ects of the coupling spring constants k(v)
eff,12

and
k(v)
eff,21

.
* (b) is for the cases of &&neglecting'' the e!ects of the coupling spring constants k(v)

eff,12
and k(v)

eff,21
.
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From Table 4 one sees that the "rst "ve natural frequencies of the &&constrained''
beam (u6

1
"230)5, u6

2
"1415)8, u6

3
"3962)9, u6

4
"7765)9, u6

5
"12838)8 rad/s) are

very close to those of the &&unconstrained'' beam listed in the "nal row of
Table 4 (u

1
"225)8, u

2
"1415)2, u

3
"3962)7, u

4
"7765)3, u

5
"12836)5 rad/s).

From Figures 6(c) and (a) one sees that the "rst "ve mode shapes of the
&&constrained'' beam are also quite close to those of the &&unconstrained'' beam.

By comparing the present results with those of the last sections, one "nds that the
in#uence on the dynamic characteristics of the constrained beam due to a single
two-d.o.f. spring}mass system is much more than that due to the multiple two-d.o.f.
spring}mass systems. This phenomenon seems to be like the e!ects on a beam due
to the action of a concentrated load and the distributed loads. Let *u6

s
"D u6

sa
!u6

sb
D

(s"1}5) represent the absolute value of the di!erence between the sth natural
frequency (u6

sq
) obtained from FEM2(a) or ANCM(a) (by &&considering'' the e!ects
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of the coupling e!ective spring constants k(v)
eff,12

and k(v)
eff,21

) and the sth one (u6
sh
)

obtained from, FEM2(b) or ANCM(b) (by &&neglecting'' the e!ects of the coupling
e!ective spring constants k(v)

eff,12
and k(v)

eff,21
), then from Tables 1, 2, and 4 one sees

that the values of *u6
s
due to a single two-d.o.f. spring}mass system (as shown in

Tables 1 and 2) are also much larger than those due to the multiple spring}mass
systems (as shown in Table 4). It is believed that this phenomenon has also
something to do with the distribution of the two-d.o.f. spring}mass systems along
the length of the carrying beam.

It is also worthy of mention that the CPU time requires by the ANCM is about
one half of that required by the FEM1 as one may see from the "nal columns of
Tables 1(a) (b), 2 and 4. The total number of "nite elements for each uniform beam
was 20, since exstensive studies of the problem show that this "nite element model
will give the reasonable accuracy for the natural frequencies. Besides, the
computing machine used is the IBM 486PC. Since the ANCM is available only if
each two-d.o.f. spring}mass system is replaced by the two equivalent springs with
spring constants k(v)

eq, i
and k(v)

eq, k
, the theory presented in this paper should be

signi"cant from this point of view.

8. CONCLUSIONS

1. The analytical-and-numerical-combined method (ANCM) is one of the most
e!ective techniques to determine the natural frequencies and the corresponding
mode shapes of a uniform beam carrying multiple two degree-of-freedom (d.o.f.)
spring}mass systems. The computer time requires by the ANCM is about one-half
of that required by the conventional "nite element method (FEM1) for the
examples illustrated in this paper. However, the ANCM is available only if each
two-d.o.f. spring}mass system is replaced by the two equivalent springs with spring
constants k(v)

eq, i
and k(v)

eq,k
by means of the presented technique.

2. In addition to saving the computer time, the presented approach excluded all
the trivial modes associated with the &&local vibrations'' of all the attached two-d.o.f.
spring}mass systems. It is believed that this will be signi"cant if only the dynamic
responses of the uniform beam alone are interested. Besides, the presented
approach provides an alternative simple uni"ed technique for solving the title
problem in addition to the conventional "nite element method.

3. In general, the in#uence on the dynamic characteristics of a uniform beam due
to the action of a concentrated load is much more than that due to the distributed
loads. This seems also true for a single spring}mass system and the multiple
spring}mass systems. Of course, it is believed that the parameters of the two-d.o.f.
spring}mass systems (such as m(v)

e
, J(v)

e
, k(v)

y
, a(v)

1
and a(v)

2
) should be also the key

factors in addition to the distribution of the two-d.o.f. spring}mass systems along
the length of the beam. This will be the topic for our further study.

REFERENCES

1. J. C. SNOWDON 1968 <ibration and Shock in Damped Mechanical Systems, New York:
Wiley.



380 J.-J. WU AND A. R. WHITTAKER
2. R. G. JACQUOT 1978 Journal of Sound and <ibration, 60 535}542. Optimal dynamic
vibration absorbers for general beam systems.

3. E. H. DOWELL 1979 ASME Journal of Applied Mechanics, 46 206}209. On some general
properties of combined dynamic systems.

4. J. W. NICHOLSON and L. A. BERGMAN 1986 Journal of Engineering Mechanmics 112 1}13
Free vibrationof combined dynamical systems.

5. H. N. OZGUVEN and B. CANDIR 1986 Journal of Sound and <ibration 111, 377}390.
Suppressing the "rst and second responses of beams by dynamic vibration absorbers.

6. D. N. MANIKANAHALLY and M. J. CROCKER 1991 ASME Journal of <ibration and
Acoustics, 113, 116}122. Vibration absorbers of hysteretically damped mass-load
beams.

7. P. A. A. LAURA, E. A. SUSEMIHL, J. L. POMBO, L. E. LUISONI and R. GELOS 1977 Applied
Acoustics 10, 121}145. On the dynamic behaviour of structural elements carrying
elastically mounted concentrated masses.

8. L. ERCOLI and P. A. A. LAURA 1987 Journal of Sound and <ibration. 114, 519}533.
Analytical and experimental investigation on continuous beams carrying elastically
mounted masses.

9. H. LARRONDO, D. AVALOS and P. A. A. LAURA 1992 Ocean Engineering 19, 461}468.
Natural frequencies of Bernoulli beam carrying an elastically mounted concentrated
mass.

10. M. GURGOZE 1996 Journal of Sound and <ibration 190, 149}162. On the
eigen-frequencies of a cantilever beam with attached tip mass and a spring}mass
system.

11. L. FRYBA, 1971<ibration of Solids and Structures under Moving ¸oads, The Netherlands:
Noordho! International Publishing.

12. J. HINO, T. Yoshimura, K. Konishi and N. Ananthanarayana 1984. Journal of Sound and
<ibration 96, 45}53. A "nite element method prediction of the vibration of a bridge
subjected to a moving vehicle load.

13. J. HINO, T. YOSHIMURA and N. ANANTHANARAYANA 1985, Journal of Sound and <ibration
100, 477}491. Vibrtion analysis of non-linear beams subjected to a moving load using
the "nite element method.

14. T. YOSHIMURA, J. HINO and N. ANANTHANARAYANA 1986. Journal of Sound and<ibration,
104, 179}186. Vibration analysis of a non-linear beam subjected to moving loads by
using the Galerkin method.

15. T. YOSHIMURA and M. SUGIMOTO 1990. Journal of Sound and <ibration, 138, 433}445.
An active suspension for a vehicle travelling on #exible beams with an irregular
surface.

16. Y. H. LIN and M. W. TRETHEWEY 1990 Journal of Sound and <ibration 136, 323}342
Finite element analysis of elastic beams subjected to moving dynamic loads.

17. Y. H. LIN and M. W. TRETHEWEY, H. M. REED, J. D. SHAWLEY, S. J. SAGER 1990 Journal of
<ibration and Acoustics 112, 355}365. Dynamic modeling and analysis of a high speed
precision drilling machine.

18. M. U. JEN and E. B. MAGRAB 1993 Journal of <ibration and Acoustics 115, 202}209.
Natural frequencies and mode shapes of beams carrying a two-degree-of-freedom
spring}mass system.

19. T. P. CHANG and C. Y. CHANG 1998 International Journl of Solids and Structures 35,
383}402. Vibration analysis of beams with a two-degree-of-freedom spring}mass
system.

20. M. GURGOZE 1998 Journal of Sound and <iberation 217, 585}595. On the alternative
formulations of the frequency equations of a Bernoulli}Euler beam to which several
spring}mass systems are attached inspan.

21. J. S. WU and H. M. CHOU 1998. Journal of Sound and <ibrtion, 213, 317}332. Free
vibration analysis of a cantilever beam carrying any number of elastically mounted
pointed masses with the analytical-and-numerical-combined method.



22. J. J. WU, M. P. CARTMELL and A. R. WHITTAKER 1998 Free <ibiration Analysis of Beams
Carrying Any Number of ¹wo-DOF Spring}Mass Systems by Finite Element Method.
Technique Report, Glasgow, U.K. Department of Mechanical Engineering, University
of Glasgow.

23. B. CARNAHAN, H. A. LUTHER and J. O. WIKES, 1977 Applied Numerical Methods. New
York: Wiley.

BEAM WITH MULTIPLE TWO-DOF SPRING-MASSES 381


	1. INTRODUCTION
	2. EQUATION OF MOTION FOR EACH TWO-DOF SPRING-MASS SYSTEM
	Figure 1

	3. EQUIVALENT SPRING CONSTANTS
	4. EQUATION OF MOTION FOR THE CONSTRAINED BEAM
	5. CHARACTERISTIC EQUATIONS FOR THE CONSTRAINED BEAM
	6. SOLUTION OF THE PROBLEM WITH THE FEM
	Figure 2

	7. NUMERICAL RESULTS AND DISCUSSIONS
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

	8. CONCLUSIONS
	REFERENCES

